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Abstract Stochastically and intrinsically extended non relativistic quantum particles are
described by combining the ideas of a stochastic quantum theory and a quantum functional
theory. The former relates the extension to imperfect real measurements while the latter
considers it as intrinsic. Physical states, Positive-Operator-Valued measures connected to
measurement, and propagators are given and discussed. The stochastic theory is sufficient
when the bilocal field describing the particle has a product form.

Keywords Positive-Operator-Valued measures · Extended particles · Stochastic theory ·
Quantum mechanics

1 Introduction

Conventional quantum mechanics is based on a pointlike conception of elementary particles.
This conception extrapolates to the relativistic regime and to conventional quantum field the-
ory although it has been contested from the early days of quantum mechanics. De Broglie
tried to conceive the pointlike image as a singularity in a physical wave u which represents
an extended body [5]. Thereafter, Destouches proposed a generalized version of this idea in
his functional theory [6, 7]. Its main feature is that the analysis of the concept of physical
system with respect to the remaining part of the Universe leads to the influence of the lat-
ter on the intrinsic characteristics of the former. As a consequence, an elementary particle
may be represented by a function u describing these characteristics and, as such, it must be
conceived as a nonrigid extended body. This replacement of the pointlike conception x ∈ R3

by a functional conception u entails a replacement of the conventional quantum mechanical
wave function ψ̂t (x) = ψ̂(t,x) by a quantum functional wave Xt [u] = X(t,u). The state
X may not belong to a Hilbert space (but to a space which contains one) and the physical
wave u may be handled by associating it to a (realistic) model. Of course, abiding by a re-
alistic standpoint is comforting but we prefer taking a detached point of view by replacing
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the term (realistic) by the more general term (physical). In other words, what is important
for us is the banishment of the pointlike conception of elementary particles. A geometro-
differential model [10, 17] has been constructed on this basis, where the extended particles
are composed of two quantum local modes. The external mode evolves in the external phys-
ical space-time and the internal mode is localized in an internal space-time, the points of
which are arguments of the physical wave u. Let us call these particles intrinsically or func-
tionally extended as opposed to those which are stochastically extended and introduced in a
recent (geometro)-stochastic quantum theory [14–16]. The stochastic theory [14] stemmed
from group theoretic considerations [2, 3] linked with measurement theoretic ones [13], and
is based on an operational principle asserting that a physical theory should take into account
the experimental circumstances surrounding the observation process. The main property of
concern is the imperfect nature of the measuring apparatuses. In this context, the position q
and momentum p of a system particle are determined with confidence functions χ̂q and χ̃p

reflecting the imperfectness of real measuring devices. Respectively, these confidence func-
tions are squares of two functions ξ̂ (in the configuration representation) and ξ̃ (in the mo-
mentum representation) that specify irreducible phase space representations of the Galilean
group [14]. Moreover, translating their phase space representative ξ with all amounts q and
boosting it to all velocities v = p/m leads to an overcomplete family {ξq,p;q ∈ R3,p ∈ R3}
of generalized coherent states in the phase space representation Hilbert space. Correspond-
ingly, the element ξ is interpreted as a proper state vector of a test particle playing the role
of a microdetector which is stochastically at rest at the origin of an inertial frame ([13, 14];
see relations (10) and (12) below). The element ξq,p corresponds to a state of the same parti-
cle with stochastic position (q, χ̂q) and momentum (p, χ̃p). The whole family constitutes a
quantum frame lifting the status of space-time to a quantum level in a fiber bundle geometric
structure capable of bearing a consistent formulation of quantum gravity [15, 16].

Our main problem is the reconsideration of the functional and stochastic theories from
their fundamental principles in the nonrelativistic regime. We think that both are so nat-
ural that they must be taken into account on an equal footing. In fact, the interpretation
of the marginal probabilities, of measuring only the position or momentum of the particle,
is fundamental in the stochastic theory. According to that interpretation, a measurement is
performed with a real (imperfect) apparatus on a system particle that retains an intrinsic
pointlike nature since its stochastic extension is a mere reflection of that imperfectness. In
contradistinction, the system particle is intrinsically extended in the functional theory but the
functionals give previsions for the measurement of sharp (accurate) values of observables
with a perfect apparatus. Since the adoption of an intrinsic pointlike image for the system
particle and a perfect nature of the apparatus are equal idealizations, we shall try to construct
a model that combines the functional and the stochastic theories so that the particles are ex-
tended in the intrinsic and stochastic senses. The discussion of specific advantages of such
a construction will be shifted to the end of the conclusion since it is connected with future
developments in the relativistic case. At the present stage, we prefer checking the theory in
the non relativistic regime (where the interpretations are clear-cut) and not to overshadow
its generality with specific applications since they may be very diverse.

The state of the system particle is represented by the functional X[û] = �̂[û] identified
with a bilocal field �̂(x,y), where x ∈ R3 is the external space variable and y ∈ R3 is the
internal one. We shall proceed gradually in considering the test particle (microdetector) and
the system particle. One first natural assumption is that the external part of the intrinsically
extended system particle is observed with the stochastic test particles, while the internal
mode retains its pointlike character. Hence, the stochastic proper state vectors ξq,p;y display
a pointlike character with respect to y. A little more involved assumption is that the test
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particles have an intrinsic extension in addition to the stochastic one, with functional proper
state vector �̂q,p;y[λ̂] = ξ̂q,p;yλ̂ being the product of their stochastic proper state ξ̂q,p;y (or its
generalized version) with their physical wave λ̂. This case has some analogy with the (sta-
tistical formulation of) stochastic theory when the test particles have internal structure [14].

In Sect. 1, we introduce our model and reanalyze as briefly as possible the functional and
the stochastic theories to make the paper understandable and self-contained. In Sect. 2, we
consider the case where the test particle is stochastically extended and the system particle
is intrinsically extended. We rewrite expressions for the most fundamental objects. Namely,
we define the Hilbert spaces, the proper state vectors and the generic state vectors. The
resulting systems of covariance, which are positive operator valued measures giving the
probabilities of the position and momentum simultaneous measurement outcomes, are then
determined in conjunction with the ensuing marginal probabilities. The formal expression
of the free propagator is given also. In Sect. 3, we postulate the system of covariance related
to stochastic test particles which have an intrinsic extension. Then, all other expressions are
derived for intrinsically extended particles with some remarks for pointlike system particles.
In Sect. 4, we conclude our work.

2 Functional and Stochastic Theories

The functional theory replaces the pointlike conception of an elementary particle (a point
x ∈ R3) by a functional one whereby this particle is represented by a physical wave u de-
pending on a space-time variable y = (y0,y). The physical interpretation of (y0,y) de-
pends on the physical model adopted for the treatment of u. In our geometro-differential
model [10], they belong to the internal space-time of the particle while the variables
x = (t,x) belong to the physical external space-time being the base manifold of a Hilbert
bundle. The elements of the fibers above x are the physical waves u describing the proper
characteristics of the particle in an irreducible induced representation of the internal sym-
metry group [12]. Hence, they were interpreted as representing internal pointlike quantum
modes localized in the internal space. According to the functional theory, probabilities are
given by the functional wave X[t, u] having a spectral decomposition

X =
∑

i

ciXi (1)

with respect to an observable A with a spectrum ai and probability amplitudes ci . The ele-
ments Xi can be called the proper functional states corresponding to a value ai with proba-
bility one. In the strict sense, X[t, u] should be a wave in a space Ru containing the physical
waves. Since the guidelines for the definition of such a wave are far from being obvious, we
have previously [10, 17] chosen a simple bilocal form

X[t, u](x, y) = ψ̂(x, y) (2)

interpreted as the probability amplitude that the external mode be localized at x at time t

and the internal mode be localized at y at (relative, proper, . . .) time y0. It is clear from the
above considerations that albeit the particle is extended, the observed values (such as x) are
considered as being sharp. Our aim is to improve this situation with the stochastic theory to
the presentation of which we now turn.
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Stochastic localization is described by systems of covariance,

Pξ (B) =
∫

B

|ξq,p〉dqdp〈ξq,p|; q,p ∈ � = R6 (3)

defined as positive operator valued (POV) measures over Borel sets B in nonrelativistic
phase space �, rather than by systems of imprimitivity which are projector valued measures
[12, 14]. The states |ξq,p〉 are obtained from a single state |ξ 〉 by a kinematic operation of
translation by an amount q and a boost to a velocity v = p/m where m is the mass of the
particle. In the configuration representation, this reads

ξ̂q,p(x) = (Ûq,pξ̂ )(x) = exp

[
i

�
p(x − q)

]
ξ̂ (x − q) (4)

where Ûq,p = Û (b = 0,q,v = p/m,R = I ) is a representation of a Galilean transformation
with no time translation b and no rotation R. The function ξ̂ (x) belongs to L2(R3) with
norm ‖ξ̂‖ = (2π�)−3/2 and is rotationally invariant. It is a configuration representative of
the phase space proper state vector ξ which generates a resolution of the identity

∫

�

|ξq,p〉dqdp〈ξq,p| = 1 (5)

in the Hilbert space of (phase space representation) state vectors, so that

|ψ〉 =
∫

�

dqdpψ(q,p)|ξq,p〉 (6)

ψ(q,p) = 〈ξq,p|ψ〉 = 〈ξ̂q,p|ψ̂〉 = 〈ξ̃q,p|ψ̃〉 (7)

The above inner products are defined by integrals over phase space, configuration, and mo-
mentum spaces respectively. Thus, the irreducible phase space representation space L2

ξ (R
6)

contains square integrable wave function related to the corresponding configuration and mo-
mentum representation wave functions by

ψ(q,p) =
∫

ξ̂ ∗
q,p(x)ψ̂(x)dx =

∫
ξ̃ ∗

q,p(k)ψ̃(k)dk (8)

When the stochastic particle is in the state |ψ〉, the probability that a simultaneous measure-
ment of stochastic position and momentum yield values (q,p) within B ⊂ �, with confi-
dence functions χ̂

ξ
q (x) and χ̃

ξ
p (k) is given by

P
ξ

ψ(B) = 〈ψ |Pξ (B)ψ〉 =
∫

B

dqdp|ψ(q,p)|2 (9)

The configuration confidence function χ̂
ξ
q (x) appears in the marginal probability that the

position measurement result q belong to the set 
1 ∈ R3

P
ξ

ψ(
1 × R3) =
∫


1

dq
∫

R3
dxχ̂ ξ

q (x)|ψ̂(x)|2 (10)

χ̂ ξ
q (x) = (2π�)3|ξ̂ (x − q)|2 (11)
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The marginal probability for the momentum p to be observed within the set 
2 ∈ R3 has an
analogous expression

P
ξ

ψ(R3 × 
2) =
∫


2

dp
∫

R3
dkχ̃ ξ

p (k)|ψ̃(k)|2 (12)

χ̃ ξ
p (k) = (2π�)3|ξ̃ (k − p)|2 (13)

The interpretation of P
ξ

ψ(
1 ×R3) as a probability is based on the interpretation of χ̂
ξ
q (x) as

a conditional probability density that the reading of position be q when the system particle
is localized at x, and the interpretation of |ψ̂(x)|2 as a probability density of its localization
at x. In this respect, P ξ

ψ(
1 ×R3) is the probability that only the reading of the measurement
of the position (and not the actual position of the particle) belongs to 
1. This accounts for
a stochastic localization in configuration space due to the imperfect nature of the measuring
device described by the confidence function χ̂

ξ
q (x). This interpretation holds true in the mo-

mentum space. Hence, the system particle can be considered as stochastically extended since
it can never be sharply localized. The measuring apparatus, which is described by χ̂

ξ
q (x),

acquires a quantum character by interpreting the function ξ̂ as a proper wave function of a
stochastically extended test particle playing the role of a (real or imperfect) microdetector
which is at stochastic rest at the origin of a classical system of reference. The state |ξq,p〉 is
then interpreted as proper state vector of such a microdetector localized at mean stochastic
position q with mean momentum p. The family {|ξq,p〉; (q,p) ∈ R6} corresponds to an array
of microdetectors and constitutes a quantum frame [14–16]. The above POV measures are
then associated to these microdetectors and describe this type of measurement.

It is clear that the configuration and momentum marginal probabilities are the cornerstone
for the consistency of the physical interpretation. However, in these marginal probabilities,
the system particle is conceived as essentially pointlike with sharp probability amplitudes
ψ̂(x) and ψ̃(k). The question that we are addressing in this work is how the stochastic
formalism should be presented when dealing with intrinsically extended particles. It turns
out that the answer depends on how the intrinsic extension is conceived. In some of these
conceptions, we have to rewrite the system of covariance in a generalized form introduced
in a statistical formulation of the stochastic theory and related to a system of N particles
with internal structure [14]. When specialized to the case of one particle, the generalized
system of covariance is given by the POV measure

Pγ (B) =
∫

B⊂�

γq,pdqdp (14)

where γq,p = Uq,pγU−1
q,p and the operator γ belongs to the trace class and can be written as

γ =
∞∑

i=1

|ξi〉λi〈ξi |; ξ̂i ∈ L2(R3), ‖ξ̂i‖ = (2π�)−3/2 (15)

This form is suitable for microdetectors having probabilities λi to be in the different internal
states ξ̂i before the detection is performed [14]. Probabilities that measurement outcomes of
the variables (q,p) be within a domain B of � are then given in terms of the density matrix
ρ of the physical system by

Pρ(B) = Tr[ρPγ (B)] =
∞∑

i=1

λi

∫

B⊂�

〈Uq,pξi |ρUq,pξi〉dqdp (16)
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A modified form of expression (15) will be used in this work for test particles with intrinsic
extension. Let us ignore this extension in a first step and consider extended particles whose
external part is stochastically extended while the internal part is sharp.

3 Stochastically Extended Microdetectors

The most immediate implementation of stochastic values in the model of extended parti-
cles consists of applying the stochastic frame work to the external evolution of the particle.
The internal evolution is considered as inaccessible to direct measurement and may be let
unchanged. In other words, the stochastically extended microdetectors are used for the de-
termination of the global location of the extended system particle in external space-time.
Then the physical states belong to the Hilbert space

Hξ = L2
ξ (R

6) ⊗ L2(R3) (17)

which is a tensor product of the stochastic external and sharp internal spaces, with inner
product

〈�|�〉 =
∫

R9
ψ∗(q,p;y)ψ(q,p;y)dqdpdy (18)

The stochastic wave function for the extended particle being

ψ(q,p;y) = 〈ξq,p;y|�〉 =
∫

R3
dxξ̂ ∗

q,p(x)�̂(x,y) (19)

|ξq,p;y〉 = |ξq,p〉 ⊗ |y〉 (20)

The integral form in (19) is an isometry between Hξ and the configuration Hilbert space
L2(R6) containing the functions �̂(x,y). The configuration representative of ξq,p;y is

ξ̂q,p;y(x,y′) = ξ̂q,p(x)δ(y′ − y) (21)

Rigorously, one should consider a triple (� ⊂ Hξ ⊂ �′) consisting of a Hilbert space Hξ ,
a dense subspace �, and the corresponding dual �′. We shall not go into these technical de-
tails but mention the physical interpretation of the Dirac “bra” space �′ as that of measuring
apparatuses states [4] and that 〈ξq,p;y| is an operator acting [16] on � and not on Hξ . Since
this latter remark concerns only the internal part of the present work, it is meaningful to
interpret |ξq,p;y〉 as the proper state vector of a microdetector with internal pointlike degrees
of freedom.

In general, a direct product of the external and internal Galilean groups G and G′ is as-
sumed to act on Hξ through a phase space representation U(G) and an induced configuration
representation Û ′(G′), respectively. A system of covariance with respect to U(G) ⊗ Û ′(G′)
can be defined by

Pξ (B × B ′) =
∫

B,B ′
|ξq,p;y〉dqdpdy〈ξq,p;y| (22)

=
∫

B

|ξq,p〉dqdp〈ξq,p| ⊗
∫

B ′
|y〉dy〈y| (23)
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where B is a Borel set in the external phase space � and B ′ another set in the internal
configuration space R3. The second equality shows the product form of an external system
of covariance with respect to U(G) with an internal system of imprimitivity with respect to
Û ′(G′). Hence, the physical interpretations of the mean value

P
ξ

�(B × B ′) = 〈�|Pξ (B × B ′)�〉 =
∫

B′
dy

∫

B

dqdp|ψ(q,p;y)|2 (24)

are different for the external and internal parts in the sense that the former yields proba-
bilities of stochastic measurement outcomes while the latter yields the probability that the
internal mode be effectively localized in the region B ′. Accordingly, the following marginal
components

Pξ (B) ≡ Pξ (B × R3) =
∫

B

|ξq,p〉dqdp〈ξq,p| ⊗ 1 (25)

Pξ (B
′) ≡ Pξ (� × B ′) = 1 ⊗

∫

B ′
|y〉dy〈y| (26)

are the aforementioned systems of covariance with respect to U(G) ≡ U(G)⊗1 and system
of imprimitivity with respect to U ′(G′) ≡ 1 ⊗ U ′(G′). They correspond to the respective
probabilities

P
ξ

�(B × R3) = 〈�|Pξ (B × R3)�〉 =
∫

R3
dy

∫

B

dqdp|ψ(q,p;y)|2 (27)

P
ξ

�(� × B ′) = 〈�|Pξ (� × B ′)�〉 =
∫

B′
dy

∫

�

dqdp|ψ(q,p;y)|2 (28)

The operator (25) is identical to (3) and its own marginal components are those of the sto-
chastic theory. In our case, these marginal components

Pξ (
1) ≡ Pξ ((
1 × R3) × R3) =
∫


1

dq
∫

R3
dp|ξq,p〉〈ξq,p| ⊗ 1 (29)

Pξ (
2) ≡ Pξ ((R3 × 
2) × R3) =
∫

R3
dq

∫


2

dp|ξq,p〉〈ξq,p| ⊗ 1 (30)

give the probabilities

〈�|Pξ (
1)�〉 =
∫


1

dq
∫

R6
dpdy|ψ(q,p;y)|2

=
∫


1

dq
∫

R3
dxχ̂ ξ

q (x)

∫

R3
dy|�̂(x,y)|2 (31)

〈�|Pξ (
2)�〉 =
∫


2

dp
∫

R6
dqdy|ψ(q,p;y)|2

=
∫


2

dp
∫

R3
dkχ̃ ξ

p (k)

∫

R3
dy|�̃(k,y)|2 (32)

that the measurement of only the stochastic position or momentum of the intrinsically ex-
tended particle yield the result q ∈ 
1 or p ∈ 
2 with confidence functions

χ̂ ξ
q (x) = (2π�)3|ξ̂ (x − q)|2 (33)
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χ̃ ξ
p (k) = (2π�)3|ξ̃ (k − p)|2 (34)

We note that the final result is the same as for the ordinary stochastic quantum mechanics
except that the probability density |ψ̂(x)|2 of a pointlike system particle has been replaced
by the marginal probability density

∫
R3 dy|�̂(x,y)|2 of an intrinsically extended system

particle. When �̂(x,y) = ψ̂(x)û(y), we have ψ(q,p;y) = ψ(q,p)u(y) and the stochastic
probabilities are recovered if u is normalized (‖û‖2 = 1), or by a renormalization of the
confidence function which becomes

χ̂ ξ
q (x) = (2π�)3‖û‖2|ξ̂ (x − q)|2 (35)

In studying propagation, we have to introduce the external and internal time parameters
t and y0. According to the functional theory, t designates the time measured by an observer
while y0 represents a time variable which is an argument of u with no specific physical
interpretation. Denoting y = (y0,y), we can define the following propagator

Kξ(t
′,q′,p′, y ′; t,q,p, y) = 〈ξq′,p′;y′ |Uξq,p;y〉 (36)

= 〈ξq′,p′ |U(t ′−t)ξq,p〉〈y′|Û ′
(y′0−y0)

|y〉 (37)

U = U(t ′−t) ⊗ Û ′
(y′0−y0)

(38)

The external evolution operator is expressed in the usual way

U(t ′−t) = exp
−i

�
H0(t

′ − t) (39)

in terms of the external Hamiltonian H0. The internal evolution operator depends on the
model adopted for the physical wave u. In the case where it represents an ordinary quantum
pointlike mode evolving in the internal space, the operator is

Û ′
(y′0−y0)

= exp
−i

�
Ĥ ′

0(y
′0 − y0) (40)

and Ĥ ′
0 is the internal configuration representation Hamiltonian. The total propagator is then

a product of the external free stochastic propagator [14]

Kξ(t
′,q′,p′; t,q,p) =

∫

R3
dk exp

[
ik2(t − t ′)

2m�

]
ξ̃ ∗

q′,p′(k)ξ̃q,p(k) (41)

and the internal free pointlike propagator [12]

�̂(y ′ − y) =
(

μ

2πi�(y ′◦ − y◦)

) 3
2

exp

{
iμ(y′ − y)2

2�(y ′◦ − y◦)

}
(42)

The parameters m and μ stand for the external and internal masses, respectively.
The above result is in keeping with our previous works on nonstochastically extended

particles [10], but other models should not be discarded as will be done in the next section
concerned with microdetectors which are stochastically and intrinsically extended.
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4 Intrinsically and Stochastically Extended Microdetectors

We now endow the test particle with a distribution in the internal space so that it may be
in a proper state |ξq,p;y〉 with probability density |λ̂(y)|2, where λ̂(y) is its physical wave.
By analogy with (14) and (15), the system of covariance for such a particle with an internal
structure is

P�(B) =
∫

R3
dy|λ̂(y)|2

∫

B

|ξq,p;y〉dqdp〈ξq,p;y| (43)

〈ξ̂y|ξ̂y′ 〉 = (2π�)−3δ(y − y′) (44)

It corresponds to the replacement of the discrete index in (15) by the continuous variable y.
Now, a measurement of position and momentum, carried out with these new test parti-

cles on a system particle in a state ρ = |�〉〈�|, gives values (q,p) in the set B ⊂ � with
probability

P (B) = 〈�|P�(B)�〉 (45)

=
∫

R3
dy|λ̂(y)|2

∫

B

〈�|ξq,p;y〉dqdp〈ξq,p;y|�〉 (46)

with a confidence function to be determined later. Writing the scalar products in the config-
uration representation and rearranging the terms adequately, we get

P (B) =
∫

B

dqdp
∫

R3
dy�̂∗(q,p;y)�̂(q,p;y) (47)

where

�(q,p;y) =
∫

R6
dxdy′ �̂∗

q,p;y(x,y′)�̂(x,y′) = ψ(q,p;y)λ̂∗(y) (48)

�̂q,p;y(x,y′) = ξ̂q,p(x)λ̂(y)δ(y′ − y) (49)

The function ψ(q,p;y) is given in (19). Now, � can be regraded as a stochastic functional
wave and �y as a functional proper state vector of a test particle which is intrinsically and
stochastically extended. In terms of vectors, we have

|�q,p;y〉 = |ξq,p〉 ⊗ λ̂(y)|y〉 (50)

�(q,p;y) = 〈�|�q,p;y〉 (51)

Then, the marginal probabilities of the stochastic theory are recovered for q ∈ 
1 and p ∈ 
2

〈�|P�(
1)�〉 =
∫


1

dq
∫

R6
dxdyχ̂�

q (x;y)|�̂(x,y)|2 (52)

〈�|P�(
2)�〉 =
∫


2

dp
∫

R6
dkdyχ̃�

p (k;y)|�̃(k,y)|2 (53)

The new confidence functions

χ̂�
q (x;y) = (2π�)3|�̂y(x − q)|2 = (2π�)3|ξ̂ (x − q)|2|λ̂(y)|2 (54)

χ̃�
p (k;y) = (2π�)3|�̃y(k − p)|2 = (2π�)3|ξ̃ (k − p)|2|λ̂(y)|2 (55)
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are conditional probabilities that the measurement of the stochastic position and momentum
yield the results q and p when the external mode of the particle is at position x with momen-
tum k and the internal mode is located at y. Due to the product forms of �̂ and χ̂ , we reach
the same conclusion in this case as that in the preceding section whenever the functional
�̂(x,y) = ψ̂(x)u(y), namely, probabilities are identical to the stochastic ones with suitable
renormalizations.

All the above results sustain the interpretation of �y as a proper state vector of a test
particle, at stochastic rest at the origin of a classical inertial frame, which is in the internal
state labeled by y. Consequently, a stochastic theory can be reconstructed with these new
proper state vectors and the corresponding wave functions �(q,p,y). For instance, we can
define the following propagator

Kξ(t
′,q′,p′, y ′; t,q,p, y) = 〈�̂q′,p′;y′ |U�̂q,p;y〉 (56)

= λ̂∗(y′)λ̂(y)〈ξ̂q′,p′;y′ |U ξ̂q,p;y〉 (57)

U = U(t ′−t) ⊗ Û ′
(y′0−y0)

(58)

for the stochastic wave functional �t,y0(q,p;y) = (Ut ⊗ Û ′
y0)�(q,p;y). Respectively, the

evolution operators U and Û ′are the same as (39) and (40).
Let us note at the end of this section that analogous formulas could be derived if we

started with proper state vectors ξ̂y depending on one rather than two variables. This would
entail the replacement of ξ̂y(x,y′) and �̂(x,y′) by ξ̂y(x) and ψ̂(x) and would correspond to
the unusual situation where pointlike system particles are observed with stochastically and
intrinsically extended particles. For example, relation (19) would read

ψ(q,p;y) =
∫

R6
dx ξ̂ ∗

q,p;y(x)ψ̂(x) (59)

From an opposite standpoint, we may get rid of the δ function by choosing state vectors
ξ̂q,p;y(x,y′) = ξ̂q,p(x)d(y,y′) with bona fide d functions expressing correlations in the inter-
nal space. Then, the marginal probability for the measurement of the stochastic position q
is

〈�|P�(
1)�〉 =
∫


1

dq
∫

R6
dpdy|�(q,p;y)|2

=
∫


1

dq
∫

R9
dxdy′dy′′χ̂�

q (x;y′,y′′)�̂∗(x,y′′)�̂(x,y′) (60)

χ̂�
q (x;y′,y′′) = (2π�)3

∫

R3
dy�̂∗

y(x − q,y′)�̂y(x − q,y′′)

= (2π�)3|ξ̂ (x − q)|2
∫

R3
dy|λ̂(y)|2d(y,y′)d(y,y′′) (61)

This latter formulation has the advantage of the Hibert space structure simplicity avoiding
the triple structure (� ⊂ Hξ ⊂ �′) mentioned in the beginning of the previous section. How-
ever, the physical interpretation of the internal correlation function d is not quite clear at the
moment. Moreover the propagator turns out to be difficult to define.
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5 Conclusion

The analysis of the functional and stochastic theories revealed that the former conceptualized
a particle as intrinsically extended while the latter viewed that extension from an operational
standpoint as stochastic. The complementarity of these two standpoints is a natural question
which has not been addressed so far. In this work, we dealt with a complete description of
the extension of the particle as being intrinsically and stochastically extended. The focus was
on the spinless non relativistic case for its mathematical simplicity and its clear-cut physical
interpretations. We have presented two cases where the functional of the system particle is
represented by a bilocal wave �̂(x,y).

In the first case, the test particle is identical to that of the stochastic theory with no
intrinsic extension. This results in a stochastic description of the external part of the bilocal
wave while the internal part retains its sharp character. This is in keeping with the idea
that only the external part can undergo direct experimental observation. The quantization in
the internal space-time can then be performed with the method of induced representation
and the corresponding systems of imprimitivity determine probabilities of actual presence
in a region (i.e. not probabilities of measurement outcomes). Hilbert spaces, systems of
covariance, and propagators are products of the stochastic external part and the sharp internal
part. However, the wave function �(q,p,y) is a product form only when �̂(x,y) is, with the
consequence that external marginal probabilities are those of the stochastic theory modulo
a normalization.

The second case is an improvement of the former where the stochastic test particle is
endowed with an intrinsic extension. This implementation is not trivial since it corresponds
to associating its physical wave λ to a model drawn from the (statistical) stochastic theory
by interpreting |λ̂(y)|2 as the probability for the stochastic particle to be in the internal
state ξy. Relation (48) yields a relation between the stochastic functional wave �(q,p;y)

and the configuration functional wave �̂(x,y) and shows that the proper state vectors ξ

can be replaced by their functional counterparts �. These are given by |�q,p;y〉 = |ξq,p〉 ⊗
λ̂(y)|y〉 and their explicit form is mandatory of that of λ̂ (note that an optimal expression
for ξq,p has already been proposed and a variety of ways for the determination of alternative
expressions have been pointed out [14, 15]). Moreover, the propagator has a product form
and the stochastic interpretations can be transferred to the functional �(q,p;y). It is the
probability amplitude that the simultaneous measurement of position and momentum yields
the stochastic values (q, χ̂�

q ) and (p, χ̃�
p ) when the internal mode is at y. This probability is

not essentially different from the stochastic one when �̂(x,y) = ψ̂(x)û(y) and differs by a
normalization constant as in the first case.

The advantage of the above construction appears in the relativistic and general relativis-
tic regimes where the stochastic extension cures many of their fundamental inconsistencies
[15] and [16]. In fact, our conception of the intrinsic extension enables the consideration of
confined quantum modes which cannot be observed without the extended particle and may
be applicable to hadrons composed of quarks which may play the role of internal quantum
modes. In addition, the internal symmetry can be a de Sitter one which has been used in de-
scribing a relativistic rotator with an acceptable mass formula for hadrons [1]. Gauging this
symmetry in a nonlinear representation is capable of describing the space-time extension of
hadrons as regions where the full de Sitter connection takes place and the exterior of hadrons
as the regions where the de Sitter symmetry is broken so that the Lorentz subsymmetry is
linked with classical gravity [8]. This de Sitter gauge symmetry has been quantized from a
purely stochastic standpoint [9] and from a purely intrinsic standpoint [11]. Our future plan
is to improve the latter geometro-differential intrinsic quantum framework by incorporating
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the stochastic component in it through the replacement of the stochastic quantum frames
corresponding to the proper state vectors ξ by new quantum frames corresponding to our
proper state vectors ξy and �. This work is under consideration and may lead to a consistent
theory of hadrons in a classical gravitational background. Quantum gravity, which consti-
tutes our final goal, will thereafter be considered along the lines of the geometro-stochastic
theory. We hope that other researchers much more acquainted with quark models will find
concrete applications of the present work.
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